SARS-CoV-2 λοίμωξη και αυτοανοσία Ο ρόλος της βιταμίνης D

Ιφιγένεια Κώστογλου-Αθανασίου, MSc, MD, PhD Διευθύντρια Ενδοκρινολόγος Ενδοκρινολογικό Τμήμα ΓΝ Ασκληπιείο Βούλας

ΕΠΕΜΥ Χαλκιδική 4-9-2021

The mosaic of autoimmunity

Ιοί που συμμετέχουν στην πρόκληση αυτοανοσίας

Corona viruses

Οι κορονοιοί αποτελούν ομάδα ιών που προσβάλλουν τους ανθρώπους κυρίως ως ζωοανθρωπονόσοι

Κατά τη διάρκεια των δύο τελευταίων δεκαετιών εμφανίστηκε

O ιός του severe acute respiratory syndrome (SARS) το 2003

O Middle East respiratory syndrome coronavirus (MERS-CoV) το 2012

Ο SARS-CoV-2 ή COVID-19 τον Δεκέμβριο του 2019 στο Wuhan στην Κίνα

Zhong et al, Lancet 2003

SARS-CoV-2 και αυτοανοσία

- Ο SARS-CoV-2 μπορεί να επάγει αυτοάνοσους και αυτοφλεγμονώδεις μηχανισμούς σε γενετικά ευπαθή άτομα
- Οι μηχανισμοί αυτοί μπορεί να οδηγούν στην εμφάνιση βαριάς πνευμονίας

Caso et al, Autoimmunity Reviews 2020

Autoimmunity Reviews 19 (2020) 102524

Contents lists available at ScienceDirect

Autoimmunity Reviews

journal homepage: www.elsevier.com/locate/autrev

Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?

Dear Editor.

We have read with interest the recent article by Favalli et al. published in Autoimmunity Reviews [1]. We agree with the Authors that Corona Virus Disease 2019 (COVID-19) pandemic is unquestionably conditioning therapeutic strategies of autoimmune disorders, such as rheumatoid arthritis (RA). Indeed, RA patients show increased infectious risk because of impairment of immune system and immunosuppressive related-therapy. The Authors also suggest that the increasing knowledge about the pathophysiology of Sars-coronavirus-2 (SARS-CoV-2) infection is leading to consider cs., b- and tsDMARDs as potential therapeutic strategies for COVID-19 [1].

This point is of valuable interest for Rheumatologist and Immunologists cause among the most important mechanisms underlying COVID-19, it has been reported cytokine release storm leading to interstitial pulmonary inflammation, extensive lung damage and acute respiratory distress syndrome [2,3].

In particular, in a recent study by Qin C, et al.in which among 452

leading to their dysregulation and overproduction with overresponse of innate and adaptive mechanisms [6,7]. Remarkably, in SJIA patients, the pulmonary involvement triggers a hyper-inflammatory reaction and occurrence of secondary haemophagocytic lymphohistiocytosis (sHLH), since the up-regulation of IFN-signature, IL-1β and IL-6 may be observed [5,8].

Of note, Mehta et al. suggested that COVID-19 severity is associated with a cytokine storm syndrome resembling sHLH [9]. Also for sHLH, it is hypothesized that environmental factors may trigger or exacerbate an aberrant innate and acquired immune response, with massive synthesis of cytokines in genetically susceptible subjects [10].

Not surprisingly, as well as in course of infectious diseases, sHLH has been described in patients with autoimmune and autoinflammatory syndromes, following a triggering stimulus [10].

As highlighted by Favalli et al., at present, different antirheumatic strategies are currently included in the treatment protocol for the management of COVID-19 infection. In particular, anti-cytokine therapy, by the use of the IL-6 humanized monoclonal antibody, toci-

SARS-CoV-2 και αυτοανοσία

Citation: Clin Transl Sci (2020) 13, 1077-1086: doi:10.1111/cts.12805

ARTICLE

Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19

Yaging Zhou¹, Tao Han²*, Jiaxin Chen¹, Can Hou¹, Lei Hua¹, Shu He¹, Yi Guo¹, Sheng Zhang¹, Yanjun Wang¹, Jinxia Yuan¹, Chenhui Zhao¹, Jing Zhang¹, Qiaowei Jia¹, Xiangrong Zuo², Jinhai Li², Liansheng Wang¹, Quan Cao²* and Enzhi Jia¹*

In this study we report on the clinical and autoimmune characteristics of severe and critical novel coronavirus pneumonia caused by severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). The clinical, autoimmune, and laboratory characteristics of 21 patients who had laboratory-confirmed severe and critical cases of coronavirus disease 2019 (COVID-19) from the intensive care unit of the Huangshi Central Hospital, Hubei Province, China, were investigated. A total of 21 patients (13 men and 8 women), including 8 (38.1%) severe cases and 13 (61.9%) critical cases, were enrolled. Cough (90.5%) and fever (81.0%) were the dominant symptoms, and most patients (76.2%) had at least one coexisting disorder on admission. The most common characteristics on chest computed tomography were ground-glass opacity (100%) and bilateral patchy shadowing (76.2%). The most common findings on laboratory measurement were lymphocytopenia (85.7%) and elevated levels of C-reactive protein (94.7%) and interleukin-6 (89.5%). The prevalence of anti-52 kDa SSA/Ro antibody. anti-60 kDa SSA/Ro antibody, and antinuclear antibody was 20%, 25%, and 50%, respectively. We also retrospectively analyzed the clinical and laboratory data from 21 severe and critical cases of COVID-19. Autoimmune phenomena exist in COVID-19 subjects, and the present results provide the rationale for a strategy of preventing immune dysfunction and optimal immunosuppressive therapy.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

✓ Viral effects and immune-mediated mechanisms are the two pathogeneses of severe acute respiratory syndrome- markers, including anti-52 kDa SSA/Ro antibody. associated coronavirus (SARS-CoV) infection, and autoim- anti-60 kDa SSA/Ro antibody, and antinuclear antimune responses have been found in SARS-CoV infection body was 20%, 25%, and 50%, respectively, and we and SARS-CoV antigen can cross-react with autoantibodies in autoimmune diseases. In consideration of the high genetic in COVID-19 subjects. similarity between SARS-CoV-2 and SARS-CoV, it is necessary to explore the immune-mediated mechanism of SARS-CoV-2 and to seek ways to prevent its spread.

WHAT QUESTION DID THIS STUDY ADDRESS?

In this study we present the clinical and autoimmune characteristics of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

✓ In these cases, the prevalence of autoimmune also found that autoimmune phenomena were present

HOW MIGHT THIS CHANGE CLINICAL PHARMACOL OGY OR TRANSLATIONAL SCIENCE?

The results provide the rationale for a strategy of prevention of dysfunction of immune and optimal immunosuppressive therapy for COVID-19 in the future.

• Σε μελέτη που έγινε στην Κίνα σε 21 ασθενείς με βαριά πνευμονία διαπιστώθηκε η εμφάνιση αυτοανόσων φαινομένων, όπως antiSSA-Ro και ΑΝΑ αντισωμάτων

Zhou et al, Clin Transl Sci 2020

Αυτοάνοση θρομβοπενική πορφύρα σε λοίμωξη από SARS-CoV-2

 Εχει αναφερθεί η εμφάνιση αυτοάνοσης θρομβοπενικής πορφύρας σε ασθενή με λοίμωξη από COVID-19

Lippi et al, Clin Chimica Acta 2020

Guillain-Barre syndrome σχετιζόμενο με COVID-19 λοίμωξη

Εχει αναφερθεί η εμφάνιση Gullain-Barre συνδρόμου σε ασθενείς με COVID-19 λοίμωξη

Toscano et al, NEJM 2020

Miller-Fisher syndrome μετά λοίμωξη από COVID-19

• Το σύνδρομο Miller-Fisher είναι μορφή άτυπου Guillain-Barre συνδρόμου που χαρακτηρίζεται από αταξία, ελάττωση τενόντιων αντανακλαστικών και οφθαλμοπληγία

Gutierrez-Ortiz et al, Neurology 2020

Αντιφωσφολιπιδικό σύνδρομο σε ασθενείς με COVID-19

 Εχει εμφανισθεί εικόνα δίκην αντιφωσφολιπιδικού συνδρόμου σε ασθενείς με λοίμωξη από τον ιό SARS-CoV-

Zhang et al, NEJM 2020

KAWASAKI like disease in COVID-19

 Η νόσος Kawasaki είναι συστηματική αγγειίτιδα που προσβάλλει συνήθως παιδιά κάτω των 5 ετών

• Εχει παρατηρηθεί η εμφάνιση συνδρόμου Kawasaki-like σε παιδιατρικούς ασθενείς με λοίμωξη COVID-19

McCrindle et al, Circulation 2017
Jiatong et al, J Med Virol 2020

ΚΑWASAKI-like disease σε παιδιατρικούς ασθενείς με λοίμωξη από τον ιό SARS-CoV-2

- Χαρακτηρίζεται από cytokine storm
- Καλείται επίσης hyperinflammatory syndrome
- Οφείλεται σε
 - Δημιουργία αυτοαντισωμάτων μέσω μοριακής μίμησης
 - Αγγειακή βλάβη λόγω εναπόθεσης ανοσοσυμπλεγμάτων
 - Αντισωματοεξαρτώμενη διέγερση από IgG ανοσοσυμπλέγματα που επάγουν την ιογενή λοίμωξη σε κύτταρα που φέρουν τον υποδοχέα Fc

Kawasaki like disease in pediatric patients with COVID-19 infection

Χαρακτηριστικά ασθενών

Σχετικά μεγάλη παιδική ηλικία 6-9 ετών

Φλεγμονώδεις δείκτες αυξημένοι

Μυοκαρδίτιδα

Ανευρύσματα στεφανιαίων

Jones et al, Hosp Ped 2020

Λοίμωξη από SARS-CoV-2 σε ασθενείς με αυτοάνοσα ρευματικά νοσήματα

- Εχει παρατηρηθεί προσβολή των ασθενών με ΣΕΛ από COVID-19
- Σε ασθενείς με αυτοάνοσα ρευματικά νοσήματα η χρήση βιολογικών παραγόντων δεν φάνηκε να επηρεάζει δυσμενώς την έκβαση της λοίμωξης

Gianfranscesco et al, Lancet Rheumatol 2020

Haberman et al, NEJM 2020

Χρήση tocilizumab σε ασθενείς με βαριά λοίμωξη από τον COVID-19

 Παρατηρήθηκε βελτίωση της βαριάς λοίμωξης από τον COVID-19 μετά χορήγηση tocilizumab

Xu et al, PNAS 2020

Anakinra σε ασθενείς με COVID-19 λοίμωξη

 Εχει παρατηρηθεί βελτίωση της βαριάς λοίμωξης από τον ιό SARS-CoV-2 μετά χορήγηση anakinra

> Aouba et al, Ann Rheum Dis 2020 Cavalli et al, Lancet 2020

Covid-19 και αυτοανοσία

 Στην παθογένεια της εμφάνισης αυτοανοσίας σε ασθενείς με COVID-19 λοίμωξη φαίνεται ότι συμμετέχουν μηχανισμοί μοριακής μίμησης

NIH-PA Author Manuscript

Author Manuscrip

Published in final edited form as:

Nat Genet. 2008 January; 40(1): 35-42. doi:10.1038/ng.2007.59.

ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms

Yoshihiro Onouchi¹, Tomohiko Gunji^{1,2}, Jane C Burns³, Chisato Shimizu³, Jane W Newburger⁴, Mayumi Yashiro⁵, Yoshikazu Nakamura⁵, Hiroshi Yanagawa⁶, Keiko Wakui⁷, Yoshimitsu Fukushima⁷, Fumio Kishi⁸, Kunihiro Hamamoto⁹, Masaru Terai¹⁰, Yoshitake Sato¹¹, Kazunobu Ouchi¹², Tsutomu Saji¹³, Akiyoshi Nariai¹⁴, Yoichi Kaburagi^{14,26}, Tetsushi Yoshikawa¹⁵, Kyoko Suzuki¹⁶, Takeo Tanaka¹⁷, Toshiro Nagai¹⁸, Hideo Cho¹⁹, Akihiro Fujino²⁰, Akihiro Sekine²¹, Reiichiro Nakamichi²², Tatsuhiko Tsunoda²², Tomisaku Kawasaki²³, Yusuke Nakamura^{24,25}, and Akira Hata¹

¹Laboratory for Gastrointestinal Diseases, SNP Research Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan

²Department of Hard Tissue Engineering, Graduate School Tokyo Medical and Dental University, Tokyo 113-8549, Japan

³Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California and Rady Children's Hospital San Diego, California 92093, USA

⁴Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA

⁵Department of Public Health, Jichi Medical School, Minamikawachi, Tochigi 329-0498, Japan

⁶Saitama Prefectural University, Koshigaya, Saitama 343-8540, Japan

⁷Department of Preventive Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan

8Denartment of Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192

Ανοσοιστοχημική μελέτη ιστών θανόντων από τον ιό COVID-19 Σε ανοσοιστοχημική μελέτη ιστών ασθενών θανόντων από βαριά νόσο από τον ιό COVID-19 παρατηρήθηκε

Διάχυτη διήθηση πνευμόνων, νεφρών, ήπατος, επινεφριδίων και εντέρου από

CD3 Τ λεμφοκύτταρα

CD8 Τ λεμφοκύτταρα

Zinserling et al, Jurnal Infectologii 2020

SARS-CoV-2 and tissue invasion

Ο ιός SARS-CoV-2 χρησιμοποιεί τα ένζυμα

ACE2

transmembrane serine protease-2 (TMPRSS2)

ως υποδοχείς

Η δέσμευση του ACE2 οδηγεί σε υπερέκφραση της αγγειοτενσίνης ΙΙ που επάγει φλεγμονή, αγγειοσύσπαση, κυτταρικό πολλαπλασιασμό και τελικά πνευμονική ίνωση

Hyperstimulation of the immune system by COVID-19

Φαίνεται ότι ο ιός COVID-19
οδηγεί σε υπερβολική διέγερση
του ανοσοποιητικού συστήματος
και μπορεί να επάγει την εμφάνιση
πολλαπλών αυτοαντισωμάτων και
τελικά πιθανώς αυτοανόσων
νοσημάτων

SARS-CoV-2 and hyperstimulation of the immune system

- Ο ιός SARS-CoV-2 προκαλεί
- υπερέκκριση φλεγμονογόνων κυτταροκινών cytokine storm
- υψηλά επίπεδα φερριτίνης

Rodriguez et al, J Autoimmun 2020

Molecular mimicry between SARS-CoV-2 and humans

 Παρατηρείται ομολογία ακολουθιών αμινοξέων μεταξύ του SARS-CoV-2 και πρωτεινών του ανθρώπου

Kanduc and Shoenfeld, Immunol Res 2020

Neutrophils extracellular traps and SARS-CoV-2 infection: another link with autoimmune responses

Neutrophil extracellular traps (NET) activation and release, or NETosis, is a dynamic process that plays a critical role in innate immunity.

It represents a beneficial antimicrobial mechanism of neutrophils, which intervenes by trapping and killing invading pathogens while minimizing damage to the host cells.

It may lead to autoimmune and autoinflammatory reactions.

Production of autoantibodies in COVID-19-infected patients

In COVID-19 patients autoantibodies are formed

Antiphospholipid antibodies are one class and may contribute to thrombosis in COVID-19 patients

Anti-heparin-PF4 (aPF4), a platelet-activating antibody that is used as a marker for heparin-induced thrombocytopenia (HIT), were identified in severely-ill COVID-19 patients

Zuo et al, 2020

Autoimmune diseases in COVID-19-infected patients

- Guillain-Barre syndrome
- Miller Fisher syndrome
- Αυτοάνοση θυρεοειδίτιδα
- Νόσος Graves
- Ατυπη θυρεοειδίτιδα
- Nόσος Kawasaki
- Αυτοάνοση αιμολυτική αναιμία

Olfactory manifestations in COVID-19infected patients

 Ανοσμία σε ασθενείς με COVID-19 μπορεί να επάγεται με αυτοανόσους μηχανισμούς

Perricone et al, 2013

- Η λοίμωξη με τον ιό SARS-CoV-2 μπορεί να σχετίζεται με την εμφάνιση αυτοανοσίας
- Στην εμφάνιση αυτοανοσίας μπορεί να συμβάλλουν μηχανισμοί υπερβολικής διέγερσης του ανοσοποιητικού, μοριακής μίμησης, εμφάνιση neutrophil extracellular traps και παραγωγής αυτοαντισωμάτων

• Σας ευχαριστώ θερμά για το χρόνο και την προσοχή σας